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ABSTRACT

The consequences of assuming that density is conserved in the problem of determining
absolute velocities are investigated. Two questions are considered: (i) the constraints that
the density must satisfy to be compatible with the assumed geostrophic and hydrostatic
dynamics and (ii) whether and to what extent the indeterminacy in this dynamics is
removed by this additional assumption.
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1. Introduction

With the dawn of ocean forecasting approaching, the need to know velocity fields for use
as initial conditions in a prediction scheme is keenly felt. But direct velocity measurements
are still difficult to make, and so we are forced to rely on the classical procedure which
consists of inferring the velocity fields from temperature and safinity measurements. In
this procedure, we-ar* given the density field -( y,-4)ud-w must find velocity fields
u(z, y, z), v(m, y, z), w(z, y, z) and a pressure field p(z, y, z) such that

fV = ft-1P (.la)

fu = - 1 (1.lb)

0 = _P-1P -_ (1.1c)

u, + vy + w, = 0 (1.1d)

The notations in the above equations are standard: X, , z are cartesian coordinates, f is
the Coriolis parameter and a is the gravitational acceleration; p0 is an average value of the
density.

As is very well known, the integration of the hydrostatic equation from the ocean's bottom
at z= h to a depth z, viz.

p= -gf p(zy,z')dz' + Y) (1.2)

introduces an unknown function of z, y denoted here by II. This 'barotropic' component
of the pressure cannot be determined from the dynamics (1.1a,b,c.d).

The indeterminacy in the pressure entails a similar indeterminacy in the velocity fields.
Indeed, if we define

P(XyZ) = -gfp'zz')dz' (1.3)

then

U = -(of)-{P, -4- ll} (1.4a)

V = (of 1 {P 2 + II.} (].4b)

The vertical velocity, which is obtained by integrating the continuity equation in the ver-
tical,

or"t~~~wz = y,= ,) (1.5) ,

also contains the same indeterminacy. The search for the famous 'level of no motion' is
intimately related to the determination of fl(z, y).

Following in the footsteps of Worthington (1976), Wunsch (1978), Fiadeiro & Veronis
(1482) and others. we want to examine whether the addition of extra information in the'/

" -" Ollity Codes

--- Avail and/or

copy

OINr9EjTE



form of the conservation of the density field, viz.

up, + VPj + WPt - 0 (1.6)

can determine fl(z, y).

Mathematically. it is not clear whether Equation (1.6) is compatible with the dynamics
(1.1). We shall examine this question first on the f-plane and then on the 0- plane.
We shall show that in both cases the density field must satisfy certain constraints. If
these constraints are satisfied, then for the #-plane case, but not for the f-plane, H can
be determined. Our analysis is carried out in the simplest case of a flat bottom ocean.
However, it can be extended to the case where bottom topography exists as well as to
cases where quantities other than density are conserved.

2. A mathematical result

An essential step in our analysis consists in findin/a z-independent solution of an equation
of the form /

A(zy, z)II, + B(m, y, z)II, = 1 (2.1)

0 which holds in a cylindical basin D = {(z,yz) : (z.-y) E D,-h < z < 0}, where D is the
horizontal cross-section. If A and B themselves are independent of z, then the existence of
such solutions is not too surprising. Of greater interest is the case in which such solutions
exist eventhough A and B are z dependent, i.e when

A-B- EB 0 in D. (2.2)

Relabeling coordinates if need be, we interpret (2.2) to mean that

B, 0 0in D (2.2')

With the above conditions we have the following result.

Theorem: There exists a z-independent solution Il(z,y) of (2.1) if and only if for all
(z. v.z) (- D

~~(i) A(z,y, zl= ko(z,y.)B(z,y.,z)+lo(z,yj) (2.3a)

(ii) /0(Z,' Y) 0 (2.3b)

(iii) 8i(l) -,(ke/lo) 0 (2.3c)

Furthermore, this solution ll(z, y) satisfies

TII = - (X, V) (2.4a)

t = -ko( z, y)/lo(z, ) (2.4b)
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Proof: Suppose (2.3a,b,c) hold in D. We must show that a z-independent solution fl(z, yj)
of (2.1) exists, and that it satisfies (2.4a,b).

In view of (2.3b). we can write (2.3a) thus:

Ao- B4 0 ' = 1 (2.5)

Now, (2.3c) implies the existence of a function, say ll(z, y), such that (2.4a,b) hold. Sub-
stituting 1-1 and -kol-1 by their expressions in terms of II in (2.4), we conclude that this
function 11 is a solution of (2.1).

Conversely, suppose that 1I is a z-independent solution of (2.1) and that (2.2') holds. Then
we can differentiate (2.1) with respect to z and write

A, I1, + B, I, = 0. (2.6)

We note at this stage that AB - BA $ 0 in D. Indeed, if this were the case, then

B,(Afl, + BIL) = B.-

which is obtained by multiplying (2.1) by B,, could be written as

B(A, I, + B, II,) = B,.

But as a result of (2.6), we reach a contradiction. Therefore

A.B- BA t 0 (2.7)

and as a result, we can solve (2.1) and (2.6) for l and III to find

I B, (2.8a)
AB,, - BA,

11 A (2.8b)_ .4Bz - BAS

This step is not un ... e that taken by Stommel & Schott (1977) and Needler (1985) in
their study of this Iroblem.

We must next insure that these expressions for II are indeed z- independent. By considering
*= their ratio, we immediatedly see that

A. , ko(z,y)B,

and after integration we arrive at the condition (2.3a) between A and B. Substituting this
condition in (2.8a.b), we arrive at (2.4a.b). Condition (2.3c) arises from forming ll; in

*-3 -

* .. i4



two different ways. Finally, the condition (2.7) translates into (2.3b). We can easily verify
that further z differentiations do not introduce other conditions. This completes the proof.

In closing thi, section, we give an example of a partial differential equation of the form
(2.1) in which the coefficients A and B satisfy all the conditions of the theorem. The
example is:

[B(z, v, z) + 1,l + B(z,y,z)fl, = 1
P'(_ - Y)

where B is an analytic function of z. In this case,

ko = I
110 = P ZI -Y

and
= f(Z -Y)

3. The f-plane

We consider in this section the casc of the f-plane, simply as a foil for the 3--plane which
is discussed next. In this case, the flow is horizontally non-divergent. This, together with
the fact that the bottom is flat, implies that

w = 0 (3.1)

Thus, the added conservation equation reads

up_ + VPY = 0 (3.2)

Making use of the hydrostatic and geostrophic balances, this equation can be written as
follows:

-pPZZ + PZPFZ = 0 (3.3)

and since p. 4- v? is not identically zero in D lest the ocean would be at rest. this implies
that

i.e.

PZ= -P tan ao(z, y) (3.4)

or equivalently
Sv(z, y, z) = u(,, , z) tan cko(z, y) (3.5)

Thus, at a given latitude and longitude, the velocity, which is purely horizontal, has the
same direction for all depths! This result, in turn, places some constraint on the data.
Indeed. substituting (3.5) in (3.2) shows that

P, + p0 tan Q0 =0 (3.6)
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This constraint is typical of the constraints the conserved quautity must satisfy for the
data to be compatible with the assumed dynamics. What this means in practice, is that
at each station, z-independent a0 are generated by passing the best fitting line passing
through points with absiscas p. and p, (or whatever the corresponding quantities are for
the case at hand). Figure I shows an attempt to determine one such angle a0 from data
from the REX (Regional Energetics Experiment) taken on August 13, 14 and 15 1985 at
a station in the North Atlantic located at latitude 370 N and longitude 640 E. The
density was obtained from AXBT temperatures measured every two meters up to a depth
of 743 meters merged with climatological salinity data. Figures 2(a), (b) and (c)*show the
same data segregated by depth.

As we shall see, a similar constraint arises on the/8-plane.Having satisfied this constraint,
are we now capable/to determine II? The answer is unfortunately no. Indeed, from the
definition (1.3) of P. it follows that:

P. + PV tan Q0 = 0 (3.7)

This means that the baroclinic components of the flow field satisfy the conservation equa-
tion by themselves. Therefore, the need for a barotropic correction is not imperative. From
(3.4) and (3.7) it follows that

- I9l, + 11, tan ao = 0 (3.8)

If we were forced to proceed further, then we would need to know the distribution of
--ources and sinks at the edge of our basin in order to solve this equation for f.

4. The -plane

Because of the B-effect. the horizontal mass divergence is -Bv/fo and therefore the vertical
velocity as given by (1.5) is

W(Z',Y, Z' =(Z Z0- ) a(-,, ' (4. 1)

or in terms of P and II

, = (P/.oj)j_, P. dz' + z - hj it'} (4.2)

We shall find it convenient at times to write

L w ( "Po) f P__ d z' (4.3)

The conservation equation for p now becomes

{p, + (0[4 + hj/fo)p,}11 - pH, = -p,P + pzP, - (pofo)p.W (4.4)

We are indebted to Dr. Ted Bennett for providing us with these figures.
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The question once again is whether the right hand side of (4.4) vanishes, i.e. whether the
baroclinic fields identically satisfy the conservation equation. We recall that for 0" = 0 the
answer to this question was always yes. If each side of (4.4) is separately zero, then the
density field which makes up the data is constrained to satisfy two distinct equations. The
equation stemming from the baroclinic part is

-p,IP. + p.P, - (pofo)p.W = 0 (4.5)

whereas that from the barotropic part yields

pg + f{p, + (3[z + h)/fo)p,}tanco =0 (4.6)

where co is, as previously, solely a function of z and y. Are there isopycnal surfaces which
satisfy both of the above equations?

We shall show that this question must be answered negatively. Integrating (4.6) over z
and using the definition (1.3) of P. we deduce that

P= t-ta o(P +3(z +)/ 13
P,, -t--tano{P,+ f +h) + P}=O (4.7)

Next, we eliminate p, and P. from (4.5) using (4.6) and (4.7). The result is:

dz~{ '-' iZ =0f p-,o P Iz' + ,iz (4.8)

If we differentiate this equation with respect to z, we see that

fop{P g dz'} =.fo1 - dz'-t- P dz'} (4.9)

0WP.I Z ZY I I-hP a

The above two equations imply that

P&PX& = POpZZ

i.e.
6 = pztan-yo(zy) (4.10)

We have thus reduced the problem to finding whether there exists a function p(x,y.z)
which satisfies the system of equations

El [pl - tan -vop, - P, = 0

E2 [pj p. + tanaopw + (O3[z + h]/fo)tan,,op,= =0

At this stage we appeal to the theory of systems of first order partial differential equations
(see e.g. Smirnov 164. p. 34 .). The first step in the theory consists in attempting to derive
further independent equations for p. Such additional equations are obtained by forming
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O9



Poisson brackets. Thus, denoting temporarily zly,z by Z1, z2, 23 and p., p,, p. by pl, P2,
)3.. the theory leads us to consider

3
E 3 [p] - Z{(OE/g,)(8E2/p,) - (8E2 /Oz,)(OEi/Op,)} = 0

9-1

i.e.

-((OYo/Oz) + (0yo/Oy)tan ao)(cos yo)- 2]p, + [(O8o/Oy)tan _o(cosao)- 2]p,
P-4- [(z + h)f-(Oao/by)tanvo(cosao)- 2 - 8f - I tanao]P1 = 0 (4.11)

This equation is independent of the other two. Having obtained three independent, homo-
geneous. first order partial differential equation for p which is a function of three indepen-
dent variables, the theory tells us that p = constant is the only possible solution.

Thus, on the /3-plane the baroclinic velocity fields cannot satisfy the density conservation.
'.1 Therefore. we can write (4.4) as

Afl,. -- Bl = 1 (4.12)

* where

'A pi + p, P(z + h)/fo] (4.13a)
p.P. - pP. -p.w

and A
tf

B P, - PP. (4.13b). , ~pZe, - pP=P - pA4 W

If we assume that A and B are functions of depth, then the theorem yields the following

constraint on the data
A = ko(z, y)B + lo(z, y)

and the usual expressions for the barotropic components, namely

: ~1I- - (I, V)o~zY)

On the /3-plane, the density conservation is stringent enough to determine the barotropic
field completely.

5. Concluding remarks

We have attempted to elucidate the question of how a depth dependent conserved field
can remove the depth independent indeterminacy of the velocity fields. We have seen that
this attempt leads naturally to a characterization of the class of acceptable density fields.
In turn, this suggests a very natural variational procedure, namely that the "distance"
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between the data and this set of acceptable densities be mimimized. For the 13-plane,
there ist a unique velocity field associated with this projection. Mr. T. Bennett of NORDA
is currently implementing this procedure on data from the North Atlantic.

Acknowledgement: One of us (VB) would like to thank ONR for supporting this research
under grant N00014-86-lC-0034.
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Figure Captions

Figure 1. N-S density gradient vs. E-W density gradient at 370 N and 640 E for
different depths. The measurements were taken on August 13-15, 1985 as part of the REX
experiment. The stars correspond to measurements over a depth from 105m to 203m. Open
triangles correspond to depths from 205m to 603m. Finally, dotted circles correspond to

-- _ depths from 605m to 743m. A stright line passing through the origin with a slope of -.7
provides a good fit.

Figures 2. Same data as in Figure 1 segregated by depth. (a) Upper layer (105m to 203m).
Note the large scatter. (b) Intermediate layer (205m to 603m). (c) Bottom layer (605m to
743m)
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